
C H A P T E R

8

Why Should
K–5 Educators
Teach Coding?

1

I t’s time we realize and put to action Steve Job’s words: “Everyone in this country
should learn how to program a computer…because it teaches you how to think.”

This quote appears at the beginning of a video entitled “What Most School Don’t
Teach” (youtu.be/nKIu9yen5nc) that was published in 2013 by Code.org. Starring
many famous people, including Bill Gates of Microsoft, Mark Zuckerberg of Face-
book, and will.i.am of the Black-Eyed Peas, the video’s message is a simple one:
anyone and everyone should learn to code.

Within our schools, we must build upon the belief that coding is for everyone.
There are many reasons for teaching coding, among them:

•	 It’s about teaching perseverance.

•	 It’s about teaching students how to think and reason (computational thinking).

•	 It’s about creativity and expression.

•	 It’s another way to demonstrate content knowledge (just like creating a Power-
Point or display board).

•	 It’s a way to see math in action.

©2017 ISTE. Do not copy or distribute.

9

Why Should K–5 Educators Teach Coding?

8

Coding Is for Everyone, and Parents Agree!
Code.org is a non-profit organization dedicated to giving every student in every
school the opportunity to learn computer programming. An article published on
the Code.org blog Anybody Can Learn reports that of all the new wages within the
U.S., only 16% are in computer science (Code.org, 2016).

The Bureau of Labor Statistics data on mean salaries showed the average salary
across all occupations is $48,320, while the average salary across computing jobs
is $86,170. They also acknowledge that the computer science field is growing faster
than other fields, and so they expect the number to grow. The average “demand rate”
(online ads divided by current employment) is 14.8% for computing categories, and
3.8% on average across all other jobs (Code.org, 2016).

The article also shared the scary statistic that in 2014, only 42,969, or two and
a half percent of all bachelor’s degrees were earned in computer science. Why
aren’t more university students studying computer science? One reason is because
students don’t learn about this field in grades K–12, despite evidence that early
exposure is highly correlated to majoring in computer science.

The solution proposed in the article is for schools to teach computer science in
grades K–12 and, according to a survey Code.org conducted, 90% of parents agree.

Five Reasons Why Coding Is Critical for K–5 Students
1. Making Their Thinking Visible

We know that young students are concrete thinkers and are beginning to follow
step-by-step directions. These beginning stages of following first one step, then two
steps, then multiple steps, are the start of algorithmic thinking in action. While the
youngest learners may not understand this abstract concept, we can use computer
science to make their thinking visible.

One of the behaviors of good readers is to visualize the story in their mind as they are
reading. Students often struggle to work in reverse and put their thoughts into writ-
ing, as they cannot see them. By learning how to code, students have an opportunity
to give shapes, thoughts, and actions to their thinking.

2. Sustaining Creativity

In Sir Ken Robinson’s TED Talk, “Do Schools Kill Creativity?” the renowned edu-
cator and speaker tells the audience that creativity is as important in education as
literacy. He points out that young learners will take a chance and are not afraid to

©2017 ISTE. Do not copy or distribute.

10

PART 1 Coding and Computational Thinking

be wrong. As we get older, he says, adults lose their capacity for creativity because
they are afraid of being wrong (Robinson, 2006).

Coding allows students to be creative without being wrong. If something doesn’t
work, the student must analyze what isn’t working, ask why it isn’t working, and
determine how to correct it so that it works. In essence, coding is the process of
continually making mistakes, learning from them, and correcting them.

3. Encouraging Computational Thinking

As a teacher, how many times have you heard the following feedback? ”Johnny is
great at solving computational math problems, but he continues to struggle with word
problems.”

Teaching how to read and write code supports a student’s ability to think com-
putationally. To make breakthroughs in teaching students how to solve word
problems, we must help them understand how their brains work—like a highly
complex computer. This process involves breaking apart a problem (Decomposi-
tion), identifying and creating the steps needed to solve the problem (Algorithms
& Procedures), running the procedures (Data Collection), analyzing the results
(Data Analysis) and determining if the results yielded an acceptable answer (Data
Representation & Abstraction).

Our world continually presents us with roadblocks that, given the correct frame-
work of thinking, have solutions that can harness the power of technology to make
a difference in the world. Jeanette Wing defines computational thinking as “the
thought processes involved in formulating problems and their solutions so that the
solutions are represented in a form that can be efficiently carried out by an infor-
mation-processing agent” (Wing, 2006). For the classroom teacher, this means they
must look at the students’ brain as the information-processing agent.

4. Fostering Future-Ready Skills

The Partnership for 21st Century Learning (P21) developed a framework describing
the “skills, knowledge and expertise students should master to succeed in work
and life in the 21st century (Partnerhip for 21st Century Learning, 2007).” The
framework identified three learning and innovation skills essential in preparing our
children for increasingly complex life and work environments that don’t yet exist.
These skills, often referred to as the 4 C’s, are critical thinking, communication,
collaboration, and creativity.

©2017 ISTE. Do not copy or distribute.

11

Why Should K–5 Educators Teach Coding?

Collaboration and communication are rapidly changing with the use of technology.
We can now collaborate by communicating across the state, country, and world in
real time. Working on a project and receiving instant feedback, due to advances in
computer programming, has pushed us into needing a workforce that can think
computationally.

Creativity and critical thinking can be used with coders of all ages. Coding allows
the user to become the creator of content, rather than just the consumer of content.
When we consume content we are learning about the “What” and the “How,” but
when we create content we have engaged the “Why” of learning.

5. Empowering Students to Take Action

Coding is about applying skills and creativity to solve problems. For example, in
the winter of 2011, a group of young coders were stuck in Boston during a snow
storm. Their task was to create a new website for Boston’s Public Schools; however,
within days of their arrival the city had shut down. What resulted was the coders
creating a website called Adopt a Hydrant (adoptahydrant.org) that allowed area
residents to adopt a fire hydrant and keep it clear of snow for emergency personnel
during the winter months.

Coding can be used to create real-world contexts for students. When we blur the
lines between school and the real world, we allow children to examine problems,
engage them in exploring the problems, and empower them to take action in find-
ing a solution.

Many people think action is something you do and is therefore easy to define; how-
ever, if we go back to the Golden Circle, we recognize that action stems from the
reason why we do something. If we want children to make a difference in the world,
we need to help them understand that action is not a mandate from parents or
teachers, but a lifelong mindset that teachers and parents can help develop. It must
be developed with scaffolded lessons that include explicitly taught skills, modeled
behaviors, and a gradual release of responsibility.

The following teacher reflection questions can help you begin to think about the
process:

•	 What is inquiry’s relationship to action?

•	 How does computational thinking support the skills needed to take action?

•	 How can technology be used to record, assess, and report on action?

©2017 ISTE. Do not copy or distribute.

12

PART 1 Coding and Computational Thinking

•	 How do coding skills fit into one’s ability to take action?

Why Not Teach Coding?
While there are many reasons for adding coding, there are an equal or greater
number of arguments against. The first step to incorporating coding into existing
curriculum is to identify the roadblocks.

Roadblock 1: Getting Comfortable with Living in Beta

In many schools across the country there are after school clubs dedicated to com-
puter science and coding. While this is a great start for exposure, it does not allow
all students to access the computational thinking skills that are developed by cod-
ing. Teachers who have a passion for computer science are usually the ones running
these clubs, but how do we get all K–5 teachers comfortable with coding?

This brings us to the ability to live in beta. This concept is explored by Molly Schro-
eder in her 2013 TED talk “Living in Beta” (youtube.com/watch?v=0nnYI3ePrY8).
Schroder defines beta as “the space between A and B” and adds that this is where
the learning happens. She points out that with the ever-changing nature of technol-
ogy, we would best serve our students by jumping in with them as they approach
solving a problem. New discoveries in neuro-science and revelations on how the
brain works are changing the way teachers interact with student learning opportuni-
ties. Coding is a new literacy that is upon us and, as she states in her TED Talk, “if we
sit around waiting until it all shakes out, we’re going to miss the boat. Not only will
we be too late and learn nothing along the way, but we’ll also lose out on the opportu-
nity to help influence how things evolve and take shape (Schroeder, 2013).”

Roadblock 2: Fear of Failure

Often I have heard K–5 teachers say, “but I can’t do that without a lot of profes-
sional development.” Teachers may fear the unknown and feel they don’t under-
stand, or have time to learn, how to code. More importantly, the field of education
has an overall fear of failing, spreading to the paralyzing fear of risk-taking. This is
our biggest hurdle! Allowing teachers to take risks, fail, and learn to improve the
process from their failure is what coding is all about.

The essential question becomes, how do we get off this escalator we are stuck on?
Take a moment to watch the YouTube video “Stuck on An Escalator–Take Action”
(youtu.be/VrSUe_m19FY). It shows two people who are literally stuck on an esca-
lator when it stops moving. When I showed this to a group of teachers, they all
laughed as the lady asks the gentleman stuck on the escalator with her for a cell

©2017 ISTE. Do not copy or distribute.

13

Why Should K–5 Educators Teach Coding?

phone. The gentleman then proceeds to shout, “Hello…there are two people stuck
on an escalator and we need help…now! Would somebody please do something?”
The two proceed to sit down on their respective steps until a repair technician
comes to fix the escalator, only to get stuck about half way up the escalator. The
video concludes by stating that most problems are easy to solve, you just need to
get off the escalator. In order to get off our escalator and face our fear of coding, we
need to understand the Law of Diffusion of Innovation and how it relates to coding
in K–5.

Everett Rogers, a professor of communication studies, popularized this theory in
his book Diffusion of Innovations in 1962. The book has since been revised and the
fifth edition was published in 2003. The basis of the theory is that diffusion is the
process by which an innovation is communicated over time among an organiza-
tion. According to Rogers’ theory, there are five categories of those who adopt an
innovation.

Innovators. Individuals who are willing to take risks, have financial backing,
and have scientific resources and interaction with other innovators, all of which
allows them to adopt innovations that may ultimately fail.

Early Adopters. Those who have the highest degree of opinion leadership and
advanced education. They are more cautious in adoption choices than the
innovators.

Early Majority. Those who will adopt an innovation after a degree of time in
which they have seen its successful use. This group usually has above average
social status, but this group is not seen as having opinion leadership.

Late Majority. Those who approach an innovation with skepticism.

Laggards. The last group to adopt the innovation. This group of individuals
typically has an aversion to change.

The innovators of the K–5 Coding include Seymore Papert, Michel Resnick, Fred
Martin, and others who developed and adopted early programming languages;
beginning in the 1970s with Logo, which was used to draw shapes, designs, and
patterns by typing in simple commands on the screen; and leading to the develop-
ment of Scratch, a visual block programming language made specifically for young
coders, in 2004.

©2017 ISTE. Do not copy or distribute.

14

PART 1 Coding and Computational Thinking

The early adopters began catching on to these coding platforms and coding grew in
popularity throughout the first decade of the 21st Century. In 2004, the Computer
Science Teachers Association (CSTA) was founded and it created recommended
computer science standards. Coding gained more popularity though collaborative
social platforms like the one created for Scratch (scratch.mit.edu) in 2012. Hadi
Partovi followed suit and launched Code.org in 2013. Each year, Code.org organizes
the Hour of Code, which, according to their 2016 Annual Report, has engaged more
than 350 million students, reaching one out of every ten children on the planet
(Code.org, 2017).

Figure 1.1 shows the tipping point that Code.org hopes to achieve through the cod-
ing resources they provide for students and educators.

By picking up this book, and trying out at least one activity, you will be an early
adopter by bringing coding into the curriculum and fostering development of this
important 21st century literacy in your school!

Roadblock 3: Time

For K–5 teachers to incorporate coding and computational thinking, we simply can-
not add another subject to their already full schedules. Teachers are already tasked
with creating learning experiences in reading, writing, science, social studies,
health, and habits of mind. How can they be expected to add learning and teaching
coding to their schedules?

K–5
Tipping
Point

Early
Adopters
13.5%

Early
Majority

34%

Late
Majority

34%

Laggards
16%

Innovators
2.5%

Figure 1.1. Innovation diffusion curve showing rate
of adoption of coding by K–5 students.

Innovation Diffusion Curve of K–5 Coders

©2017 ISTE. Do not copy or distribute.

15

Why Should K–5 Educators Teach Coding?

What teachers may not realize is that they are already teaching many of the foun-
dational components of computational thinking. When we ask students to read a
story and then sequence the events into the correct order, they are using the same
process a computer programmer uses in decomposition, data analysis, and data
representation. For example, when computer programmers are presented with a
complex problem to solve, they first need to break the problem down into simple
parts. Then the programmer will analyze the parts and put them in the correct
order. Finally, the computer will represent the data in a simple way that the user
can understand. Our youngest readers use this same process when the teacher
reads them a story and they must take the picture representation of the story and
put it into the correct sequence of events to make meaning. It is not more time we
need, but the ability to help our students make the connections.

The required skills within the Common Core State Standards and particularly the
Standards for Mathematical Practice can be taught using coding as a tool. I often
hear of teachers struggling to find concrete ways to teach and observe these eight
mathematics standards. Appendix B shares connections between computational
thinking and the Standards for Mathematical Practice, and strategies for implement-
ing coding within the math classroom. Again, it is not a matter of adding more time
to another subject, but using a 21st century tool in a way that will help the concrete
understanding of often time abstract mathematical concepts.

©2017 ISTE. Do not copy or distribute.

